Commands Cheat Sheet

Try DrDroid: AI Agent for Debugging

80+ monitoring tool integrations
Long term memory about your stack
Locally run Mac App available

Thankyou for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.

Thank you for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.
Read more
Time to stop copy pasting your errors onto Google!

Installation

pip install langchain
Install LangChain library

pip install langchain-openai
Install LangChain OpenAI integration

Basic LangChain Setup

from langchain.llms import OpenAI
Import OpenAI LLM

llm = OpenAI(openai_api_key='your-api-key')
Initialize OpenAI LLM

llm('your prompt here')
Generate simple completion

Chains

from langchain.chains import LLMChain
Import basic LLMChain

from langchain.prompts import PromptTemplate
Import PromptTemplate

chain = LLMChain(llm=llm, prompt=prompt)
Create a chain

chain.run(input_variables)
Execute a chain

Agents

from langchain.agents import initialize_agent, Tool
Import agent components

agent = initialize_agent(tools, llm, agent='zero-shot-react-description')
Create an agent

agent.run('your task here')
Run an agent

Memory

from langchain.memory import ConversationBufferMemory
Import conversation memory

memory = ConversationBufferMemory()
Initialize memory

chain = LLMChain(llm=llm, prompt=prompt, memory=memory)
Add memory to chain

Document Loading

from langchain.document_loaders import TextLoader
Import document loader

loader = TextLoader('path/to/file.txt')
Create a loader

documents = loader.load()
Load documents

Embeddings

from langchain.embeddings import OpenAIEmbeddings
Import embeddings

embeddings = OpenAIEmbeddings()
Initialize embeddings

vector = embeddings.embed_query('your text')
Create embedding for text

Vector Stores

from langchain.vectorstores import Chroma
Import vector store

db = Chroma.from_documents(documents, embeddings)
Create vector store from documents

docs = db.similarity_search('query')
Search for similar documents

Debugging

import langchain
Import LangChain

langchain.debug = True
Enable debug mode

langchain.verbose = True
Enable verbose mode