Commands Cheat Sheet

Evaluating engineering tools? Get the comparison in Google Sheets

(Perfect for making buy/build decisions or internal reviews.)

Most-used commands
Your email is safe thing.

Thankyou for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.

Getting Started

pip install llama-index
Install LlamaIndex

pip install llama-index-llms-openai
Install OpenAI LLM integration

from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex, LLMPredictor, ServiceContext
Import common modules

from llama_index.llms import OpenAI
Import OpenAI LLM

Document Loading

documents = SimpleDirectoryReader('data_directory/').load_data()
Load documents from a directory

documents = SimpleDirectoryReader().load_data(file_paths=['file1.pdf', 'file2.txt'])
Load specific files

from llama_index.readers.web import SimpleWebPageReader
Import web reader

documents = SimpleWebPageReader().load_data(urls=['https://example.com'])
Load data from websites

Index Creation

index = GPTVectorStoreIndex.from_documents(documents)
Create vector store index from documents

index.save_to_disk('index.json')
Save index to disk

index = GPTVectorStoreIndex.load_from_disk('index.json')
Load index from disk

from llama_index import StorageContext, load_index_from_storage
Import storage context

storage_context = StorageContext.from_defaults(persist_dir='./storage')
Create storage context

index = load_index_from_storage(storage_context)
Load index from storage

Querying

query_engine = index.as_query_engine()
Create a query engine

response = query_engine.query('your question here')
Execute the query

print(response)
Print the response

query_engine = index.as_query_engine(similarity_top_k=5)
Create query engine with top k results

Advanced Retrieval

from llama_index.retrievers import VectorIndexRetriever
Import vector retriever

retriever = VectorIndexRetriever(index=index, similarity_top_k=5)
Create a retriever

nodes = retriever.retrieve('query text')
Retrieve nodes from index

from llama_index.query_engine import RetrieverQueryEngine
Import retriever query engine

query_engine = RetrieverQueryEngine(retriever=retriever)
Create query engine from retriever

Custom LLM Configuration

llm = OpenAI(model='gpt-4', temperature=0.2)
Configure OpenAI LLM

service_context = ServiceContext.from_defaults(llm=llm)
Create service context with custom LLM

index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
Create index with custom service context

Embedding Models

from llama_index.embeddings import OpenAIEmbedding
Import OpenAI embedding model

embed_model = OpenAIEmbedding(model='text-embedding-ada-002')
Configure embedding model

service_context = ServiceContext.from_defaults(embed_model=embed_model)
Create service context with custom embedding model

Chat Engines

chat_engine = index.as_chat_engine()
Create a chat engine

response = chat_engine.chat('your message')
Chat with the engine

response = chat_engine.chat('follow-up question')
Ask follow-up questions maintaining context