Commands Cheat Sheet

Try DrDroid: AI Agent for Debugging

80+ monitoring tool integrations
Long term memory about your stack
Locally run Mac App available

Thankyou for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.

Thank you for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.
Read more
Time to stop copy pasting your errors onto Google!

Connection

pymilvus.connections.connect(host='localhost', port='19530')
Connect to a Milvus server using Python client

pymilvus.connections.connect(alias='default', uri='http://localhost:19530')
Connect using URI format

pymilvus.connections.disconnect('default')
Disconnect from Milvus server

pymilvus.connections.list_connections()
List all connections

pymilvus.connections.has_connection('default')
Check if a connection exists

Collection Management

pymilvus.Collection('collection_name')
Get a collection instance

pymilvus.utility.list_collections()
List all collections

pymilvus.has_collection('collection_name')
Check if a collection exists

collection.drop()
Drop a collection

collection.create_index('field_name', index_params)
Create an index

collection.has_index('field_name')
Check if a field is indexed

collection.drop_index('field_name')
Drop an index

Schema Definition

pymilvus.FieldSchema('id', pymilvus.DataType.INT64, is_primary=True)
Define a primary key field

pymilvus.FieldSchema('vector', pymilvus.DataType.FLOAT_VECTOR, dim=128)
Define a vector field

pymilvus.CollectionSchema(fields=[field1, field2, ...])
Create a schema with multiple fields

pymilvus.Collection('name', schema)
Create a collection with schema

Data Operations

collection.insert(data)
Insert data into collection

collection.delete('id in [1, 2, 3]')
Delete entities by condition

collection.load()
Load collection into memory

collection.release()
Release collection from memory

collection.flush()
Flush inserted data to storage

Search and Query

collection.search(vectors, 'field_name', search_params, limit=10, expr='')
Vector similarity search

collection.query('id > 100', output_fields=['field1', 'field2'])
Query entities by condition

collection.get_query_segment_info()
Get query segment information

Partitions

collection.create_partition('partition_name')
Create a partition

collection.has_partition('partition_name')
Check if a partition exists

collection.drop_partition('partition_name')
Drop a partition

collection.partitions
Get all partitions

Metrics and Monitoring

collection.num_entities
Get number of entities in collection

pymilvus.utility.get_server_version()
Get Milvus server version

pymilvus.utility.get_server_status()
Check server status