Commands Cheat Sheet

Try DrDroid: AI Agent for Debugging

80+ monitoring tool integrations
Long term memory about your stack
Locally run Mac App available

Thankyou for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.

Thank you for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.
Read more
Time to stop copy pasting your errors onto Google!

Server Connection and Setup

mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root ./artifacts --host 0.0.0.0 --port 5000
Start MLflow tracking server with SQLite backend

mlflow server --backend-store-uri postgresql://user:password@localhost/mlflow --default-artifact-root s3://bucket/path
Start MLflow tracking server with PostgreSQL backend and S3 artifact storage

export MLFLOW_TRACKING_URI=http://localhost:5000
Set MLflow tracking server URI in environment

mlflow.set_tracking_uri('http://localhost:5000')
Set MLflow tracking server URI in Python code

Experiment Management

mlflow experiments create --experiment-name
Create a new experiment

mlflow experiments list
List all experiments

mlflow experiments search --filter "name='my-experiment'"
Search for experiments by name

mlflow.set_experiment('my-experiment')
Set active experiment in Python

mlflow experiments delete --experiment-id
Delete an experiment by ID

Run Management

mlflow run
Run a project from a URI or local path

mlflow run . --experiment-name my-experiment
Run current directory project in a specific experiment

mlflow run . -P alpha=0.5
Run with a parameter

mlflow.start_run()
Start a new run in Python

mlflow.end_run()
End current run in Python

mlflow runs list --experiment-id
List runs for an experiment

mlflow runs delete -r
Delete a run by ID

Tracking

mlflow.log_param('learning_rate', 0.01)
Log a parameter in Python

mlflow.log_metric('accuracy', 0.95)
Log a metric in Python

mlflow.log_metrics({'accuracy': 0.95, 'f1': 0.90})
Log multiple metrics in Python

mlflow.log_artifact('plot.png')
Log an artifact file in Python

mlflow.log_artifacts('outputs')
Log a directory of artifacts in Python

mlflow.set_tag('version', 'v1.0')
Set a tag in Python

Model Management

mlflow.sklearn.log_model(model, 'model')
Log scikit-learn model in Python

mlflow.pytorch.log_model(model, 'model')
Log PyTorch model in Python

mlflow.tensorflow.log_model(model, 'model')
Log TensorFlow model in Python

mlflow.pyfunc.load_model('runs://model')
Load a model in Python

mlflow models serve -m runs://model -p 1234
Serve a model as REST API

mlflow models build-docker -m runs://model -n my-model
Build Docker image for a model

UI and Search

http://localhost:5000
Access MLflow UI in browser

mlflow.search_runs(experiment_ids=['0'])
Search runs for an experiment in Python

mlflow.search_runs(filter_string="metrics.accuracy > 0.9")
Search runs with metric filter in Python

mlflow.get_run()
Get a specific run in Python