Commands Cheat Sheet

Evaluating engineering tools? Get the comparison in Google Sheets

(Perfect for making buy/build decisions or internal reviews.)

Most-used commands
Your email is safe thing.

Thankyou for your submission

We have sent the cheatsheet on your email!
Oops! Something went wrong while submitting the form.

Installation

pip install onnxruntime
Install ONNX Runtime CPU version

pip install onnxruntime-gpu
Install ONNX Runtime GPU version

pip install onnx
Install ONNX (Open Neural Network Exchange)

Model Loading

import onnxruntime as ort
Import ONNX Runtime

session = ort.InferenceSession('model.onnx')
Load an ONNX model

session = ort.InferenceSession('model.onnx', providers=['CUDAExecutionProvider'])
Load model with GPU acceleration

Inference

input_name = session.get_inputs()[0].name
Get input name

output_name = session.get_outputs()[0].name
Get output name

results = session.run([output_name], {input_name: input_data})
Run inference

predictions = results[0]
Access prediction results

Model Inspection

session.get_inputs()
Get model input details

session.get_outputs()
Get model output details

session.get_providers()
List available execution providers

ort.get_device()
Get the device being used

Performance Tuning

options = ort.SessionOptions()
Create session options object

options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
Enable all optimizations

options.intra_op_num_threads = 4
Set number of threads

session = ort.InferenceSession('model.onnx', sess_options=options)
Create session with custom options

ONNX Model Conversion

import onnx
Import ONNX

onnx_model = onnx.load('model.onnx')
Load ONNX model

onnx.checker.check_model(onnx_model)
Validate ONNX model

onnx.save(onnx_model, 'new_model.onnx')
Save ONNX model