Setup and Authentication
wandb login
Authenticate with Weights & Biases server using API key
wandb login --host=URL
Login to a custom W&B server
wandb init
Initialize a new W&B project in your directory
pip install wandb
Install the W&B package
Tracking Experiments
wandb.init(project='project_name')
Initialize a new run in a project
wandb.config.update({'param': value})
Track hyperparameters for a run
wandb.log({'metric_name': value})
Log metrics during training
wandb.watch(model)
Track gradients and parameters of PyTorch, TensorFlow, or Keras models
wandb.finish()
Finish a run and sync final data
Managing Runs
wandb.restore('file_name')
Restore a file from a previous run
wandb.save('file_path')
Save a file to W&B
wandb runs
List runs in terminal
wandb sync folder_path
Sync offline runs to W&B
Artifacts
artifact = wandb.Artifact('name', type='dataset')
Create a new artifact
artifact.add_file('path/to/file')
Add a file to artifact
artifact.add_dir('path/to/dir')
Add a directory to artifact
run.log_artifact(artifact)
Log an artifact to a run
artifact = run.use_artifact('entity/project/artifact:version')
Use an artifact in a run
artifact.download()
Download an artifact
Sweeps (Hyperparameter Optimization)
wandb sweep sweep_config.yaml
Initialize a sweep
wandb agent sweep_id
Start an agent for a sweep
wandb.init(project='project_name', config=sweep_config)
Initialize a run with sweep configuration
Reports and Visualizations
wandb.plot.line_series()
Create a line plot
wandb.plot.scatter()
Create a scatter plot
wandb.plot.confusion_matrix()
Log a confusion matrix
wandb.plot.pr_curve()
Plot precision-recall curve
wandb.plot.roc_curve()
Plot ROC curve
Team Collaboration
wandb.init(project='project_name', entity='team_name')
Initialize a run in a team project
wandb.alert(title='Alert', text='Message')
Send alert to team members